Cluster.hs 25.4 KB
Newer Older
Iustin Pop's avatar
Iustin Pop committed
1
2
3
{-| Implementation of cluster-wide logic.

This module holds all pure cluster-logic; I\/O related functionality
Iustin Pop's avatar
Iustin Pop committed
4
goes into the "Main" module for the individual binaries.
Iustin Pop's avatar
Iustin Pop committed
5
6
7

-}

8
module Ganeti.HTools.Cluster
Iustin Pop's avatar
Iustin Pop committed
9
10
    (
     -- * Types
11
     NameList
Iustin Pop's avatar
Iustin Pop committed
12
13
14
15
    , Placement
    , Solution(..)
    , Table(..)
    , Removal
Iustin Pop's avatar
Iustin Pop committed
16
    , Score
17
    , IMove(..)
Iustin Pop's avatar
Iustin Pop committed
18
19
20
21
22
23
24
25
    -- * Generic functions
    , totalResources
    -- * First phase functions
    , computeBadItems
    -- * Second phase functions
    , computeSolution
    , applySolution
    , printSolution
26
    , printSolutionLine
27
    , formatCmds
Iustin Pop's avatar
Iustin Pop committed
28
29
    , printNodes
    -- * Balacing functions
30
    , applyMove
Iustin Pop's avatar
Iustin Pop committed
31
32
33
    , checkMove
    , compCV
    , printStats
34
    -- * IAllocator functions
35
36
    , allocateOnSingle
    , allocateOnPair
Iustin Pop's avatar
Iustin Pop committed
37
38
39
40
41
42
    ) where

import Data.List
import Data.Maybe (isNothing, fromJust)
import Text.Printf (printf)
import Data.Function
43
import Control.Monad
Iustin Pop's avatar
Iustin Pop committed
44

45
46
47
import qualified Ganeti.HTools.Container as Container
import qualified Ganeti.HTools.Instance as Instance
import qualified Ganeti.HTools.Node as Node
Iustin Pop's avatar
Iustin Pop committed
48
import Ganeti.HTools.Types
49
import Ganeti.HTools.Utils
Iustin Pop's avatar
Iustin Pop committed
50

Iustin Pop's avatar
Iustin Pop committed
51
-- | A separate name for the cluster score type
Iustin Pop's avatar
Iustin Pop committed
52
53
54
type Score = Double

-- | The description of an instance placement.
55
type Placement = (Int, Int, Int, Score)
Iustin Pop's avatar
Iustin Pop committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

{- | A cluster solution described as the solution delta and the list
of placements.

-}
data Solution = Solution Int [Placement]
                deriving (Eq, Ord, Show)

-- | Returns the delta of a solution or -1 for Nothing
solutionDelta :: Maybe Solution -> Int
solutionDelta sol = case sol of
                      Just (Solution d _) -> d
                      _ -> -1

-- | A removal set.
71
data Removal = Removal Node.List [Instance.Instance]
Iustin Pop's avatar
Iustin Pop committed
72
73

-- | An instance move definition
Iustin Pop's avatar
Iustin Pop committed
74
data IMove = Failover                -- ^ Failover the instance (f)
Iustin Pop's avatar
Iustin Pop committed
75
76
77
78
           | ReplacePrimary Int      -- ^ Replace primary (f, r:np, f)
           | ReplaceSecondary Int    -- ^ Replace secondary (r:ns)
           | ReplaceAndFailover Int  -- ^ Replace secondary, failover (r:np, f)
           | FailoverAndReplace Int  -- ^ Failover, replace secondary (f, r:ns)
Iustin Pop's avatar
Iustin Pop committed
79
80
81
             deriving (Show)

-- | The complete state for the balancing solution
82
data Table = Table Node.List Instance.List Score [Placement]
Iustin Pop's avatar
Iustin Pop committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
             deriving (Show)

-- General functions

-- | Cap the removal list if needed.
capRemovals :: [a] -> Int -> [a]
capRemovals removals max_removals =
    if max_removals > 0 then
        take max_removals removals
    else
        removals

-- | Check if the given node list fails the N+1 check.
verifyN1Check :: [Node.Node] -> Bool
verifyN1Check nl = any Node.failN1 nl

-- | Verifies the N+1 status and return the affected nodes.
verifyN1 :: [Node.Node] -> [Node.Node]
verifyN1 nl = filter Node.failN1 nl

{-| Add an instance and return the new node and instance maps. -}
104
105
addInstance :: Node.List -> Instance.Instance ->
               Node.Node -> Node.Node -> Maybe Node.List
Iustin Pop's avatar
Iustin Pop committed
106
107
108
109
110
111
112
113
114
115
116
addInstance nl idata pri sec =
  let pdx = Node.idx pri
      sdx = Node.idx sec
  in do
      pnode <- Node.addPri pri idata
      snode <- Node.addSec sec idata pdx
      new_nl <- return $ Container.addTwo sdx snode
                         pdx pnode nl
      return new_nl

-- | Remove an instance and return the new node and instance maps.
117
removeInstance :: Node.List -> Instance.Instance -> Node.List
Iustin Pop's avatar
Iustin Pop committed
118
119
120
121
122
123
124
125
126
127
128
removeInstance nl idata =
  let pnode = Instance.pnode idata
      snode = Instance.snode idata
      pn = Container.find pnode nl
      sn = Container.find snode nl
      new_nl = Container.addTwo
               pnode (Node.removePri pn idata)
               snode (Node.removeSec sn idata) nl in
  new_nl

-- | Remove an instance and return the new node map.
129
removeInstances :: Node.List -> [Instance.Instance] -> Node.List
Iustin Pop's avatar
Iustin Pop committed
130
131
132
133
134
135
removeInstances = foldl' removeInstance

-- | Compute the total free disk and memory in the cluster.
totalResources :: Container.Container Node.Node -> (Int, Int)
totalResources nl =
    foldl'
Iustin Pop's avatar
Iustin Pop committed
136
137
    (\ (mem, dsk) node -> (mem + (Node.f_mem node),
                           dsk + (Node.f_dsk node)))
Iustin Pop's avatar
Iustin Pop committed
138
139
140
141
142
143
144
145
146
147
148
    (0, 0) (Container.elems nl)

{- | Compute a new version of a cluster given a solution.

This is not used for computing the solutions, but for applying a
(known-good) solution to the original cluster for final display.

It first removes the relocated instances after which it places them on
their new nodes.

 -}
149
applySolution :: Node.List -> Instance.List -> [Placement] -> Node.List
Iustin Pop's avatar
Iustin Pop committed
150
applySolution nl il sol =
151
152
153
    let odxes = map (\ (a, b, c, _) -> (Container.find a il,
                                        Node.idx (Container.find b nl),
                                        Node.idx (Container.find c nl))
Iustin Pop's avatar
Iustin Pop committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
                    ) sol
        idxes = (\ (x, _, _) -> x) (unzip3 odxes)
        nc = removeInstances nl idxes
    in
      foldl' (\ nz (a, b, c) ->
                 let new_p = Container.find b nz
                     new_s = Container.find c nz in
                 fromJust (addInstance nz a new_p new_s)
           ) nc odxes


-- First phase functions

{- | Given a list 1,2,3..n build a list of pairs [(1, [2..n]), (2,
    [3..n]), ...]

-}
genParts :: [a] -> Int -> [(a, [a])]
genParts l count =
    case l of
      [] -> []
      x:xs ->
          if length l < count then
              []
          else
              (x, xs) : (genParts xs count)

-- | Generates combinations of count items from the names list.
genNames :: Int -> [b] -> [[b]]
genNames count1 names1 =
  let aux_fn count names current =
          case count of
            0 -> [current]
            _ ->
                concatMap
                (\ (x, xs) -> aux_fn (count - 1) xs (x:current))
                (genParts names count)
  in
    aux_fn count1 names1 []

{- | Computes the pair of bad nodes and instances.

The bad node list is computed via a simple 'verifyN1' check, and the
bad instance list is the list of primary and secondary instances of
those nodes.

-}
201
computeBadItems :: Node.List -> Instance.List ->
Iustin Pop's avatar
Iustin Pop committed
202
203
                   ([Node.Node], [Instance.Instance])
computeBadItems nl il =
204
  let bad_nodes = verifyN1 $ filter (not . Node.offline) $ Container.elems nl
Iustin Pop's avatar
Iustin Pop committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
      bad_instances = map (\idx -> Container.find idx il) $
                      sort $ nub $ concat $
                      map (\ n -> (Node.slist n) ++ (Node.plist n)) bad_nodes
  in
    (bad_nodes, bad_instances)


{- | Checks if removal of instances results in N+1 pass.

Note: the check removal cannot optimize by scanning only the affected
nodes, since the cluster is known to be not healthy; only the check
placement can make this shortcut.

-}
219
checkRemoval :: Node.List -> [Instance.Instance] -> Maybe Removal
Iustin Pop's avatar
Iustin Pop committed
220
221
222
223
224
225
226
227
228
229
230
checkRemoval nl victims =
  let nx = removeInstances nl victims
      failN1 = verifyN1Check (Container.elems nx)
  in
    if failN1 then
      Nothing
    else
      Just $ Removal nx victims


-- | Computes the removals list for a given depth
231
computeRemovals :: Node.List
Iustin Pop's avatar
Iustin Pop committed
232
233
                 -> [Instance.Instance]
                 -> Int
234
                 -> [Maybe Removal]
Iustin Pop's avatar
Iustin Pop committed
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
computeRemovals nl bad_instances depth =
    map (checkRemoval nl) $ genNames depth bad_instances

-- Second phase functions

-- | Single-node relocation cost
nodeDelta :: Int -> Int -> Int -> Int
nodeDelta i p s =
    if i == p || i == s then
        0
    else
        1

{-| Compute best solution.

    This function compares two solutions, choosing the minimum valid
    solution.
-}
compareSolutions :: Maybe Solution -> Maybe Solution -> Maybe Solution
compareSolutions a b = case (a, b) of
  (Nothing, x) -> x
  (x, Nothing) -> x
  (x, y) -> min x y

-- | Compute best table. Note that the ordering of the arguments is important.
compareTables :: Table -> Table -> Table
compareTables a@(Table _ _ a_cv _) b@(Table _ _ b_cv _ ) =
    if a_cv > b_cv then b else a

-- | Check if a given delta is worse then an existing solution.
tooHighDelta :: Maybe Solution -> Int -> Int -> Bool
tooHighDelta sol new_delta max_delta =
    if new_delta > max_delta && max_delta >=0 then
        True
    else
        case sol of
          Nothing -> False
          Just (Solution old_delta _) -> old_delta <= new_delta

{-| Check if placement of instances still keeps the cluster N+1 compliant.

    This is the workhorse of the allocation algorithm: given the
    current node and instance maps, the list of instances to be
    placed, and the current solution, this will return all possible
    solution by recursing until all target instances are placed.

-}
282
checkPlacement :: Node.List            -- ^ The current node list
Iustin Pop's avatar
Iustin Pop committed
283
284
285
286
287
288
289
290
291
292
293
294
295
               -> [Instance.Instance] -- ^ List of instances still to place
               -> [Placement]         -- ^ Partial solution until now
               -> Int                 -- ^ The delta of the partial solution
               -> Maybe Solution      -- ^ The previous solution
               -> Int                 -- ^ Abort if the we go above this delta
               -> Maybe Solution      -- ^ The new solution
checkPlacement nl victims current current_delta prev_sol max_delta =
  let target = head victims
      opdx = Instance.pnode target
      osdx = Instance.snode target
      vtail = tail victims
      have_tail = (length vtail) > 0
      nodes = Container.elems nl
296
      iidx = Instance.idx target
Iustin Pop's avatar
Iustin Pop committed
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
  in
    foldl'
    (\ accu_p pri ->
         let
             pri_idx = Node.idx pri
             upri_delta = current_delta + nodeDelta pri_idx opdx osdx
             new_pri = Node.addPri pri target
             fail_delta1 = tooHighDelta accu_p upri_delta max_delta
         in
           if fail_delta1 || isNothing(new_pri) then accu_p
           else let pri_nl = Container.add pri_idx (fromJust new_pri) nl in
                foldl'
                (\ accu sec ->
                     let
                         sec_idx = Node.idx sec
                         upd_delta = upri_delta +
                                     nodeDelta sec_idx opdx osdx
                         fail_delta2 = tooHighDelta accu upd_delta max_delta
                         new_sec = Node.addSec sec target pri_idx
                     in
                       if sec_idx == pri_idx || fail_delta2 ||
                          isNothing new_sec then accu
                       else let
                           nx = Container.add sec_idx (fromJust new_sec) pri_nl
321
322
                           upd_cv = compCV nx
                           plc = (iidx, pri_idx, sec_idx, upd_cv)
Iustin Pop's avatar
Iustin Pop committed
323
324
325
326
327
328
329
330
331
332
333
334
                           c2 = plc:current
                           result =
                               if have_tail then
                                   checkPlacement nx vtail c2 upd_delta
                                                  accu max_delta
                               else
                                   Just (Solution upd_delta c2)
                      in compareSolutions accu result
                ) accu_p nodes
    ) prev_sol nodes

-- | Apply a move
335
336
applyMove :: Node.List -> Instance.Instance
          -> IMove -> (Maybe Node.List, Instance.Instance, Int, Int)
Iustin Pop's avatar
Iustin Pop committed
337
-- Failover (f)
Iustin Pop's avatar
Iustin Pop committed
338
339
340
341
342
343
344
applyMove nl inst Failover =
    let old_pdx = Instance.pnode inst
        old_sdx = Instance.snode inst
        old_p = Container.find old_pdx nl
        old_s = Container.find old_sdx nl
        int_p = Node.removePri old_p inst
        int_s = Node.removeSec old_s inst
345
346
347
348
        new_nl = do -- Maybe monad
          new_p <- Node.addPri int_s inst
          new_s <- Node.addSec int_p inst old_sdx
          return $ Container.addTwo old_pdx new_s old_sdx new_p nl
Iustin Pop's avatar
Iustin Pop committed
349
350
    in (new_nl, Instance.setBoth inst old_sdx old_pdx, old_sdx, old_pdx)

Iustin Pop's avatar
Iustin Pop committed
351
-- Replace the primary (f:, r:np, f)
Iustin Pop's avatar
Iustin Pop committed
352
353
354
355
356
357
358
359
applyMove nl inst (ReplacePrimary new_pdx) =
    let old_pdx = Instance.pnode inst
        old_sdx = Instance.snode inst
        old_p = Container.find old_pdx nl
        old_s = Container.find old_sdx nl
        tgt_n = Container.find new_pdx nl
        int_p = Node.removePri old_p inst
        int_s = Node.removeSec old_s inst
360
361
362
363
364
        new_nl = do -- Maybe monad
          new_p <- Node.addPri tgt_n inst
          new_s <- Node.addSec int_s inst new_pdx
          return $ Container.add new_pdx new_p $
                 Container.addTwo old_pdx int_p old_sdx new_s nl
Iustin Pop's avatar
Iustin Pop committed
365
366
    in (new_nl, Instance.setPri inst new_pdx, new_pdx, old_sdx)

Iustin Pop's avatar
Iustin Pop committed
367
-- Replace the secondary (r:ns)
Iustin Pop's avatar
Iustin Pop committed
368
369
370
371
372
373
applyMove nl inst (ReplaceSecondary new_sdx) =
    let old_pdx = Instance.pnode inst
        old_sdx = Instance.snode inst
        old_s = Container.find old_sdx nl
        tgt_n = Container.find new_sdx nl
        int_s = Node.removeSec old_s inst
374
375
376
        new_nl = Node.addSec tgt_n inst old_pdx >>=
                 \new_s -> return $ Container.addTwo new_sdx
                           new_s old_sdx int_s nl
Iustin Pop's avatar
Iustin Pop committed
377
378
    in (new_nl, Instance.setSec inst new_sdx, old_pdx, new_sdx)

Iustin Pop's avatar
Iustin Pop committed
379
-- Replace the secondary and failover (r:np, f)
Iustin Pop's avatar
Iustin Pop committed
380
381
382
383
384
385
386
387
applyMove nl inst (ReplaceAndFailover new_pdx) =
    let old_pdx = Instance.pnode inst
        old_sdx = Instance.snode inst
        old_p = Container.find old_pdx nl
        old_s = Container.find old_sdx nl
        tgt_n = Container.find new_pdx nl
        int_p = Node.removePri old_p inst
        int_s = Node.removeSec old_s inst
388
389
390
391
392
        new_nl = do -- Maybe monad
          new_p <- Node.addPri tgt_n inst
          new_s <- Node.addSec int_p inst new_pdx
          return $ Container.add new_pdx new_p $
                 Container.addTwo old_pdx new_s old_sdx int_s nl
Iustin Pop's avatar
Iustin Pop committed
393
394
    in (new_nl, Instance.setBoth inst new_pdx old_pdx, new_pdx, old_pdx)

Iustin Pop's avatar
Iustin Pop committed
395
396
397
398
399
400
401
402
403
-- Failver and replace the secondary (f, r:ns)
applyMove nl inst (FailoverAndReplace new_sdx) =
    let old_pdx = Instance.pnode inst
        old_sdx = Instance.snode inst
        old_p = Container.find old_pdx nl
        old_s = Container.find old_sdx nl
        tgt_n = Container.find new_sdx nl
        int_p = Node.removePri old_p inst
        int_s = Node.removeSec old_s inst
404
405
406
407
408
        new_nl = do -- Maybe monad
          new_p <- Node.addPri int_s inst
          new_s <- Node.addSec tgt_n inst old_sdx
          return $ Container.add new_sdx new_s $
                 Container.addTwo old_sdx new_p old_pdx int_p nl
Iustin Pop's avatar
Iustin Pop committed
409
410
    in (new_nl, Instance.setBoth inst old_sdx new_sdx, old_sdx, new_sdx)

411
412
allocateOnSingle :: Node.List -> Instance.Instance -> Node.Node
                 -> (Maybe Node.List, Instance.Instance)
413
414
415
416
417
418
allocateOnSingle nl inst p =
    let new_pdx = Node.idx p
        new_nl = Node.addPri p inst >>= \new_p ->
                 return $ Container.add new_pdx new_p nl
    in (new_nl, Instance.setBoth inst new_pdx Node.noSecondary)

419
420
allocateOnPair :: Node.List -> Instance.Instance -> Node.Node -> Node.Node
               -> (Maybe Node.List, Instance.Instance)
421
422
423
allocateOnPair nl inst tgt_p tgt_s =
    let new_pdx = Node.idx tgt_p
        new_sdx = Node.idx tgt_s
424
425
426
427
428
429
        new_nl = do -- Maybe monad
          new_p <- Node.addPri tgt_p inst
          new_s <- Node.addSec tgt_s inst new_pdx
          return $ Container.addTwo new_pdx new_p new_sdx new_s nl
    in (new_nl, Instance.setBoth inst new_pdx new_sdx)

Iustin Pop's avatar
Iustin Pop committed
430
431
432
433
434
435
436
437
checkSingleStep :: Table -- ^ The original table
                -> Instance.Instance -- ^ The instance to move
                -> Table -- ^ The current best table
                -> IMove -- ^ The move to apply
                -> Table -- ^ The final best table
checkSingleStep ini_tbl target cur_tbl move =
    let
        Table ini_nl ini_il _ ini_plc = ini_tbl
438
        (tmp_nl, new_inst, pri_idx, sec_idx) = applyMove ini_nl target move
Iustin Pop's avatar
Iustin Pop committed
439
440
441
442
443
444
445
    in
      if isNothing tmp_nl then cur_tbl
      else
          let tgt_idx = Instance.idx target
              upd_nl = fromJust tmp_nl
              upd_cvar = compCV upd_nl
              upd_il = Container.add tgt_idx new_inst ini_il
446
              upd_plc = (tgt_idx, pri_idx, sec_idx, upd_cvar):ini_plc
Iustin Pop's avatar
Iustin Pop committed
447
448
449
450
              upd_tbl = Table upd_nl upd_il upd_cvar upd_plc
          in
            compareTables cur_tbl upd_tbl

451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
-- | Given the status of the current secondary as a valid new node
-- and the current candidate target node,
-- generate the possible moves for a instance.
possibleMoves :: Bool -> Int -> [IMove]
possibleMoves True tdx =
    [ReplaceSecondary tdx,
     ReplaceAndFailover tdx,
     ReplacePrimary tdx,
     FailoverAndReplace tdx]

possibleMoves False tdx =
    [ReplaceSecondary tdx,
     ReplaceAndFailover tdx]

-- | Compute the best move for a given instance.
466
467
468
469
470
checkInstanceMove :: [Int]             -- Allowed target node indices
                  -> Table             -- Original table
                  -> Instance.Instance -- Instance to move
                  -> Table             -- Best new table for this instance
checkInstanceMove nodes_idx ini_tbl target =
Iustin Pop's avatar
Iustin Pop committed
471
472
473
    let
        opdx = Instance.pnode target
        osdx = Instance.snode target
474
        nodes = filter (\idx -> idx /= opdx && idx /= osdx) nodes_idx
475
476
477
478
479
        use_secondary = elem osdx nodes_idx
        aft_failover = if use_secondary -- if allowed to failover
                       then checkSingleStep ini_tbl target ini_tbl Failover
                       else ini_tbl
        all_moves = concatMap (possibleMoves use_secondary) nodes
Iustin Pop's avatar
Iustin Pop committed
480
481
    in
      -- iterate over the possible nodes for this instance
482
      foldl' (checkSingleStep ini_tbl target) aft_failover all_moves
Iustin Pop's avatar
Iustin Pop committed
483

Iustin Pop's avatar
Iustin Pop committed
484
-- | Compute the best next move.
485
486
checkMove :: [Int]               -- ^ Allowed target node indices
          -> Table               -- ^ The current solution
Iustin Pop's avatar
Iustin Pop committed
487
          -> [Instance.Instance] -- ^ List of instances still to move
488
489
          -> Table               -- ^ The new solution
checkMove nodes_idx ini_tbl victims =
Iustin Pop's avatar
Iustin Pop committed
490
491
    let Table _ _ _ ini_plc = ini_tbl
        -- iterate over all instances, computing the best move
492
493
        best_tbl =
            foldl'
494
            (\ step_tbl elem ->
Iustin Pop's avatar
Iustin Pop committed
495
                 if Instance.snode elem == Node.noSecondary then step_tbl
496
497
                    else compareTables step_tbl $
                         checkInstanceMove nodes_idx ini_tbl elem)
498
            ini_tbl victims
Iustin Pop's avatar
Iustin Pop committed
499
        Table _ _ _ best_plc = best_tbl
500
501
502
503
    in
      if length best_plc == length ini_plc then -- no advancement
          ini_tbl
      else
504
          best_tbl
Iustin Pop's avatar
Iustin Pop committed
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543

{- | Auxiliary function for solution computation.

We write this in an explicit recursive fashion in order to control
early-abort in case we have met the min delta. We can't use foldr
instead of explicit recursion since we need the accumulator for the
abort decision.

-}
advanceSolution :: [Maybe Removal] -- ^ The removal to process
                -> Int             -- ^ Minimum delta parameter
                -> Int             -- ^ Maximum delta parameter
                -> Maybe Solution  -- ^ Current best solution
                -> Maybe Solution  -- ^ New best solution
advanceSolution [] _ _ sol = sol
advanceSolution (Nothing:xs) m n sol = advanceSolution xs m n sol
advanceSolution ((Just (Removal nx removed)):xs) min_d max_d prev_sol =
    let new_sol = checkPlacement nx removed [] 0 prev_sol max_d
        new_delta = solutionDelta $! new_sol
    in
      if new_delta >= 0 && new_delta <= min_d then
          new_sol
      else
          advanceSolution xs min_d max_d new_sol

-- | Computes the placement solution.
solutionFromRemovals :: [Maybe Removal] -- ^ The list of (possible) removals
                     -> Int             -- ^ Minimum delta parameter
                     -> Int             -- ^ Maximum delta parameter
                     -> Maybe Solution  -- ^ The best solution found
solutionFromRemovals removals min_delta max_delta =
    advanceSolution removals min_delta max_delta Nothing

{- | Computes the solution at the given depth.

This is a wrapper over both computeRemovals and
solutionFromRemovals. In case we have no solution, we return Nothing.

-}
544
computeSolution :: Node.List        -- ^ The original node data
Iustin Pop's avatar
Iustin Pop committed
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
                -> [Instance.Instance] -- ^ The list of /bad/ instances
                -> Int             -- ^ The /depth/ of removals
                -> Int             -- ^ Maximum number of removals to process
                -> Int             -- ^ Minimum delta parameter
                -> Int             -- ^ Maximum delta parameter
                -> Maybe Solution  -- ^ The best solution found (or Nothing)
computeSolution nl bad_instances depth max_removals min_delta max_delta =
  let
      removals = computeRemovals nl bad_instances depth
      removals' = capRemovals removals max_removals
  in
    solutionFromRemovals removals' min_delta max_delta

-- Solution display functions (pure)

-- | Given the original and final nodes, computes the relocation description.
computeMoves :: String -- ^ The instance name
             -> String -- ^ Original primary
             -> String -- ^ Original secondary
             -> String -- ^ New primary
             -> String -- ^ New secondary
             -> (String, [String])
                -- ^ Tuple of moves and commands list; moves is containing
                -- either @/f/@ for failover or @/r:name/@ for replace
                -- secondary, while the command list holds gnt-instance
                -- commands (without that prefix), e.g \"@failover instance1@\"
computeMoves i a b c d =
    if c == a then {- Same primary -}
        if d == b then {- Same sec??! -}
            ("-", [])
        else {- Change of secondary -}
            (printf "r:%s" d,
             [printf "replace-disks -n %s %s" d i])
    else
        if c == b then {- Failover and ... -}
            if d == a then {- that's all -}
581
                ("f", [printf "migrate -f %s" i])
Iustin Pop's avatar
Iustin Pop committed
582
583
            else
                (printf "f r:%s" d,
584
                 [printf "migrate -f %s" i,
Iustin Pop's avatar
Iustin Pop committed
585
586
587
588
589
                  printf "replace-disks -n %s %s" d i])
        else
            if d == a then {- ... and keep primary as secondary -}
                (printf "r:%s f" c,
                 [printf "replace-disks -n %s %s" c i,
590
                  printf "migrate -f %s" i])
Iustin Pop's avatar
Iustin Pop committed
591
592
593
            else
                if d == b then {- ... keep same secondary -}
                    (printf "f r:%s f" c,
594
                     [printf "migrate -f %s" i,
Iustin Pop's avatar
Iustin Pop committed
595
                      printf "replace-disks -n %s %s" c i,
596
                      printf "migrate -f %s" i])
Iustin Pop's avatar
Iustin Pop committed
597
598
599
600

                else {- Nothing in common -}
                    (printf "r:%s f r:%s" c d,
                     [printf "replace-disks -n %s %s" c i,
601
                      printf "migrate -f %s" i,
Iustin Pop's avatar
Iustin Pop committed
602
603
                      printf "replace-disks -n %s %s" d i])

604
{-| Converts a placement to string format -}
605
606
printSolutionLine :: Node.List
                  -> Instance.List
Iustin Pop's avatar
Iustin Pop committed
607
608
609
610
611
612
                  -> Int
                  -> Int
                  -> Placement
                  -> Int
                  -> (String, [String])
printSolutionLine nl il nmlen imlen plc pos =
613
614
615
616
    let
        pmlen = (2*nmlen + 1)
        (i, p, s, c) = plc
        inst = Container.find i il
617
        inam = Instance.name inst
618
619
620
621
        npri = Container.nameOf nl p
        nsec = Container.nameOf nl s
        opri = Container.nameOf nl $ Instance.pnode inst
        osec = Container.nameOf nl $ Instance.snode inst
622
623
624
625
        (moves, cmds) =  computeMoves inam opri osec npri nsec
        ostr = (printf "%s:%s" opri osec)::String
        nstr = (printf "%s:%s" npri nsec)::String
    in
626
627
      (printf "  %3d. %-*s %-*s => %-*s %.8f a=%s"
       pos imlen inam pmlen ostr
628
629
630
       pmlen nstr c moves,
       cmds)

631
632
formatCmds :: [[String]] -> String
formatCmds cmd_strs =
633
    unlines $
634
    concat $ map (\(a, b) ->
635
636
637
        (printf "echo step %d" (a::Int)):
        (printf "check"):
        (map ("gnt-instance " ++) b)) $
638
639
        zip [1..] cmd_strs

Iustin Pop's avatar
Iustin Pop committed
640
{-| Converts a solution to string format -}
641
642
printSolution :: Node.List
              -> Instance.List
Iustin Pop's avatar
Iustin Pop committed
643
644
              -> [Placement]
              -> ([String], [[String]])
Iustin Pop's avatar
Iustin Pop committed
645
printSolution nl il sol =
Iustin Pop's avatar
Iustin Pop committed
646
    let
647
648
        nmlen = Container.maxNameLen nl
        imlen = Container.maxNameLen il
Iustin Pop's avatar
Iustin Pop committed
649
    in
Iustin Pop's avatar
Iustin Pop committed
650
      unzip $ map (uncurry $ printSolutionLine nl il nmlen imlen) $
651
            zip sol [1..]
Iustin Pop's avatar
Iustin Pop committed
652
653

-- | Print the node list.
654
printNodes :: Node.List -> String
655
printNodes nl =
Iustin Pop's avatar
Iustin Pop committed
656
    let snl = sortBy (compare `on` Node.idx) (Container.elems nl)
657
        m_name = maximum . map (length . Node.name) $ snl
Iustin Pop's avatar
Iustin Pop committed
658
        helper = Node.list m_name
Iustin Pop's avatar
Iustin Pop committed
659
660
661
662
        header = printf
                 "%2s %-*s %5s %5s %5s %5s %5s %5s %5s %5s %3s %3s %7s %7s"
                 " F" m_name "Name"
                 "t_mem" "n_mem" "i_mem" "x_mem" "f_mem" "r_mem"
663
664
                 "t_dsk" "f_dsk"
                 "pri" "sec" "p_fmem" "p_fdsk"
665
    in unlines $ (header:map helper snl)
Iustin Pop's avatar
Iustin Pop committed
666
667

-- | Compute the mem and disk covariance.
668
compDetailedCV :: Node.List -> (Double, Double, Double, Double, Double)
Iustin Pop's avatar
Iustin Pop committed
669
compDetailedCV nl =
670
    let
671
672
        all_nodes = Container.elems nl
        (offline, nodes) = partition Node.offline all_nodes
673
674
        mem_l = map Node.p_mem nodes
        dsk_l = map Node.p_dsk nodes
Iustin Pop's avatar
Iustin Pop committed
675
676
        mem_cv = varianceCoeff mem_l
        dsk_cv = varianceCoeff dsk_l
677
678
        n1_l = length $ filter Node.failN1 nodes
        n1_score = (fromIntegral n1_l) / (fromIntegral $ length nodes)
679
680
        res_l = map Node.p_rem nodes
        res_cv = varianceCoeff res_l
681
682
683
684
685
686
687
        offline_inst = sum . map (\n -> (length . Node.plist $ n) +
                                        (length . Node.slist $ n)) $ offline
        online_inst = sum . map (\n -> (length . Node.plist $ n) +
                                       (length . Node.slist $ n)) $ nodes
        off_score = (fromIntegral offline_inst) /
                    (fromIntegral $ online_inst + offline_inst)
    in (mem_cv, dsk_cv, n1_score, res_cv, off_score)
Iustin Pop's avatar
Iustin Pop committed
688
689

-- | Compute the 'total' variance.
690
compCV :: Node.List -> Double
Iustin Pop's avatar
Iustin Pop committed
691
compCV nl =
692
693
    let (mem_cv, dsk_cv, n1_score, res_cv, off_score) = compDetailedCV nl
    in mem_cv + dsk_cv + n1_score + res_cv + off_score
Iustin Pop's avatar
Iustin Pop committed
694

695
printStats :: Node.List -> String
Iustin Pop's avatar
Iustin Pop committed
696
printStats nl =
697
698
699
    let (mem_cv, dsk_cv, n1_score, res_cv, off_score) = compDetailedCV nl
    in printf "f_mem=%.8f, r_mem=%.8f, f_dsk=%.8f, n1=%.3f, uf=%.3f"
       mem_cv res_cv dsk_cv n1_score off_score